skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Marinkovic, Marina Krstic"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Tavis-Cummings (TC) cavity quantum electrodynamical effects, describing the interaction ofNatoms with an optical resonator, are at the core of atomic, optical and solid state physics. The full numerical simulation of TC dynamics scales exponentially with the number of atoms. By restricting the open quantum system to a single excitation, typical of experimental realizations in quantum optics, we analytically solve the TC model with an arbitrary number of atoms with linear complexity. This solution allows us to devise the Quantum Mapping Algorithm of Resonator Interaction withNAtoms (Q-MARINA), an intuitive TC mapping to a quantum circuit with linear space and time scaling, whoseN+1 qubits represent atoms and a lossy cavity, while the dynamics is encoded through 2Nentangling gates. Finally, we benchmark the robustness of the algorithm on a quantum simulator and superconducting quantum processors against the quantum master equation solution on a classical computer. 
    more » « less